(本小题满分10分 )选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于点,垂直于点,垂直于点,垂直于点,连接,.证明:(Ⅰ);(Ⅱ).
已知函数.(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)试证明:.
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.(Ⅰ)若点G的横坐标为,求直线AB的斜率;(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.
在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1.(Ⅰ)证明:BC丄AB1;(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人. (Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.(i)求该考场考生“数学与逻辑”科目的平均分; (ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.
已知△ABC中,角A,B,C所对的边分别是a, b, c, 且2(a2+b2-c2)=3ab.(Ⅰ)求;(Ⅱ)若c=2,求△ABC面积的最大值.