如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.(1)求△PEF的边长;(2)若△PEF的边EF在射线BC上移动(点E的移动范围在B、C之间,不与B、C两点重合).设BE=x,PH=y.①求y与x的函数关系式;②连接BG,设△BEG面积为S,求S与x的函数关系式,判断x为何值时S最大,并求最大值S.
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,如图①∠EDF的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF的边DE⊥AC于E时,,,满足;(1)如图②,当∠EDF的边DE和AC不垂直时,请证明上述结论仍然成立;(2)如图③,当∠EDF的边DE与AC的延长线交于点E的情况下,上述结论是否成立?若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明.
如图(1),在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE. (1)请判断:AF与BE的数量关系是 ,位置关系是 ;[www.z@zs^te%#p.com~] (2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明; (3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从点A出发向点B运动,点Q从点B出发向点C运动,它们同时出发,且速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?
如图(1),在中,,,的平分线交于.(1)求证:;(2)如图(2),过点作∥交于,将绕点逆时针旋转角得到,连结,,求证: CE′= BF′;
在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0)、B(-1,0)、C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是点P1,点P1是关于直线l的对称点是点P2,求P P2的长.