小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方是否公平?请说明理由.
如图,已知 ∠ A O C = ∠ B O C ,点 P 在 O C 上, P D ⊥ O A , P E ⊥ O B ,垂足分别为 D , E .求证: △ O P D ≌ △ O P E .
先化简,再求值: a + a 2 - 1 a - 1 ,其中 a = 5 .
解不等式组: 3 x - 2 > 1 x + 1 < 3 .
(1)发现:如图①所示,在正方形 A B C D 中, E 为AD边上一点,将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 C D 边于 G 点.求证: △ B F G ≌ △ B C G ;
(2)探究:如图②,在矩形 A B C D 中, E 为 A D 边上一点,且 A D = 8 , A B = 6 .将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 B C 边于 G 点,延长 B F 交 C D 边于点 H ,且 F H = C H ,求 A E 的长.
(3)拓展:如图③,在菱形 A B C D 中, A B = 6 , E 为 C D 边上的三等分点, ∠ D = 60 ° .将 △ A D E 沿 A E 翻折得到 △ A F E ,直线 E F 交 B C 于点 P ,求 P C 的长.
一个玻璃球体近似半圆 O , A B 为直径.半圆 O 上点 C 处有个吊灯 E F , E F ∥ A B , C O ⊥ A B , E F 的中点为 D , O A = 4 .
(1)如图①, C M 为一条拉线, M 在 O B 上, O M = 1 . 6 , D F = 0 . 8 ,求 C D 的长度.
(2)如图②,一个玻璃镜与圆 O 相切, H 为切点, M 为 O B 上一点, M H 为入射光线, N H 为反射光线, ∠ O H M = ∠ O H N = 45 ° , tan ∠ C O H = 3 4 ,求 O N 的长度.
(3)如图③, M 是线段 O B 上的动点, M H 为入射光线, ∠ H O M = 50 ° ,HN为反射光线交圆 O 于点N,在 M 从 O 运动到 B 的过程中,求 N 点的运动路径长.