图1是一个长为2,宽为2的长方形,沿图中虚线剪开,可分成四块小长方形.(1)求出图1的长方形面积;(2)将四块小长方形拼成一个图2的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、()2、之间的等量关系;(3)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含、的代数式表示).
如图,某电信公司计划修建一条连接B、C两地的电缆.测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B处测得C地的仰角为60°,已知C地比A地高200m,求电缆BC的长.(结果可保留根号)
如图,平行四边形ABCD中,AE:EB=1:2,求△AEF与△CDF的周长的比.如果S△AEF=6cm2, 求S△CDF.
国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整; (2)在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人; (3)根据统计结果,请你简单谈谈自己的看法.
(1)计算:|﹣|﹣(﹣4)﹣1+()0﹣2cos30° (2)先化简,再求值,(﹣)÷,其中a=+1.
如图1,点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题: (1)数轴上表示1和5两点之间的距离是 ,数轴上表示2和﹣1的两点之间的距离是 ; (2)数轴上表示x和﹣1的两点之间的距离表示为 ; (3)若x表示一个有理数,化简:|x﹣2|+|x+4|; (4)利用数轴求出|x+3|+|x﹣4|的最小值,并写出此时x可取哪些整数值?