某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图: (1)此次调查抽取的学生人数m=名,其中选择"书法"的学生占抽样人数的百分比n=; (2)若该校有3000名学生,请根据以上数据估计该校对"书法"最感兴趣的学生人数.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F. (1)求证:AC是⊙O的切线; (2)已知AB=10,BC=6,求⊙O的半径r.
已知:如图,在同心圆中,大圆的弦AB交小圆于C、D两点. (1)求证:∠AOC=∠BOD; (2)试确定AC与BD两线段之间的大小关系,并证明你的结论.
如图,小亮晚上在路灯下散步,已知灯杆OA=6.4m,他从灯杆底部的点O处沿直线前进9m到点D时,其影长DF=3m,当他继续前进到达点F时,其影子是变长还是变短?变化量为多少?
已知关于的一元二次方程有两个实数根和. (1)求实数的取值范围; (2)当时,求的值.
解下列方程(每小题3分,共9分) (1) (2) (3)