端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?
如图, ∠ MAN = 60 ° , AP 平分 ∠ MAN ,点 B 是射线 AP 上一定点,点 C 在直线 AN 上运动,连接 BC ,将 ∠ ABC ( 0 ° < ∠ ABC < 120 ° ) 的两边射线 BC 和 BA 分别绕点 B 顺时针旋转 120 ° ,旋转后角的两边分别与射线 AM 交于点 D 和点 E .
(1)如图1,当点 C 在射线 AN 上时,
①请判断线段 BC 与 BD 的数量关系,直接写出结论;
②请探究线段 AC , AD 和 BE 之间的数量关系,写出结论并证明;
(2)如图2,当点 C 在射线 AN 的反向延长线上时, BC 交射线 AM 于点 F ,若 AB = 4 , AC = 3 ,请直接写出线段 AD 和 DF 的长.
如图, ΔABC 内接于 ⊙ O , AC 是直径, BC = BA ,在 ∠ ACB 的内部作 ∠ ACF = 30 ° ,且 CF = CA ,过点 F 作 FH ⊥ AC 于点 H ,连接 BF .
(1)若 CF 交 ⊙ O 于点 G , ⊙ O 的半径是4,求 AG ̂ 的长;
(2)请判断直线 BF 与 ⊙ O 的位置关系,并说明理由.
“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数 y (张 ) 与电影票售价 x (元 / 张)之间满足一次函数关系: y = − 4 x + 220 ( 10 ⩽ x ⩽ 50 ,且 x 是整数),设影城每天的利润为 w (元 ) (利润 = 票房收入 − 运营成本).
(1)试求 w 与 x 之间的函数关系式;
(2)影城将电影票售价定为多少元 / 张时,每天获利最大?最大利润是多少元?
如图,直线 y = 3 x 与双曲线 y = k x ( k ≠ 0 , x > 0 ) 交于点 A ,点 A 的横坐标是1.
(1)求点 A 的坐标及双曲线的解析式;
(2)点 B 是双曲线上一点,且点 B 的纵坐标是1,连接 OB , AB ,求 ΔAOB 的面积.
在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元 / 枝,玫瑰进价为1.5元 / 枝,问至少购进玫瑰多少枝?