“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数 y (张 ) 与电影票售价 x (元 / 张)之间满足一次函数关系: y = − 4 x + 220 ( 10 ⩽ x ⩽ 50 ,且 x 是整数),设影城每天的利润为 w (元 ) (利润 = 票房收入 − 运营成本).
(1)试求 w 与 x 之间的函数关系式;
(2)影城将电影票售价定为多少元 / 张时,每天获利最大?最大利润是多少元?
已知,如图,在Rt△ABC中,∠ABC=90°∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F. (1)求证:GE=GF (2)若BD=1,求DF的长。
今年四月份,某蔬菜基地收获洋葱30吨,黄瓜13吨,现计划租用甲、乙 两种货车共10辆,将这两种蔬菜全部一次性运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨。 (1) 基地安排甲、乙两种货车时有几种方案?请你帮助设计出来; (2) 若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请把基地算一算应选择哪种方案,才能使运费最少?最少运费是多少?
在一个透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y. (1)用列表法或树状图表示出(x,y)的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图像上的概率。 (3)求小明、小华各取一次小球所确定的数x、y满足y<的概率。
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE.(结果保留两个有效数字)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70, Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)[来源
如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,AE∥CD交BC于E,求证:AB=EC