(本小题满分14分)已知等差数列中,,,各项为正数的等比数列中,,.(1)求数列和的通项公式;(2)若,求数列的前项和.
(本小题满分16分)某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.(Ⅰ)写出n关于x的函数关系式;(Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).
(本小题满分14分) 已知数列是一个公差大于0的等差数列,且满足(1)求数列的通项公式;(2)数列和数列满足等式,求数列的前n项和Sn。
(本小题满分14分)已知直三棱柱中,为等腰直角三角形,,且,分别为的中点, (1)求证://平面; (2)求证:平面; (3)求三棱锥E-ABF的体积。
(本小题满分14分)已知函数是的导函数。(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)若的值。
已知动圆M过定点P(0,m)(m>0),且与定直线相切,动圆圆心M的轨迹方程为C,直线过点P 交曲线C于A、B两点。 (1)若交轴于点S,求的取值范围; (2)若的倾斜角为,在上是否存在点E使△ABE为正三角形? 若能,求点E的坐标;若不能,说明理由.