选修4-4: 坐标系与参数方程在极坐标系中, 已知圆C的圆心C(), 半径r =.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若 α ∈ , 直线的参数方程为为参数), 直线交圆C于A、 B两点, 求弦长|AB|的取值范围.
已知函数. (1)当且时,证明:; (2)若对,恒成立,求实数的取值范围; (3)当时,证明:.
如图所示,已知、、是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且,. (1)求椭圆的方程; (2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由; (3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为、,,若直线在轴、轴上的截距分别为、,证明:为定值.
已知正项数列满足:,数列的前项和为,且满足,. (1)求数列和的通项公式; (2)设,数列的前项和为,求证:.
如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,且,. (1)设点是上任一点,试求的最小值; (2)求证:、在以为直径的圆上; (3)求平面与平面所成的锐二面角的余弦值.
图是某市月日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择月日至月日中的某一天到达该市,并停留天. (1)求此人到达当日空气质量重度污染的概率; (2)设是此人停留期间空气重度污染的天数,求的分布列与数学期望.