如图,点M(﹣3,m)是一次函数与反比例函数()的图象的一个交点.(1)求反比例函数表达式;(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为 时,△AMC与△AMC′的面积相等.
如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F. (1)求证:△BOE≌△DOF; (2)当EF与AC满足什么条件时四边形AECF是菱形,并证明你的结论.
已知反比例函数图象过第二象限内的点A(—2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,—1)。 (1)求反比例函数的解析式及m、n的值; (2)求直线y=ax+b的解析式.
某校举行“爱心传递捐款活动”,动员师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?
某公司员工的月工资情况统计如下表:
(1)分别计算该公司月工资的平均数、中位数和众数; (2)你认为用(1)中计算出的那个数据来表示该公司员工的月工资水平更为合适?
如图,在等腰梯形ABCD中,AD∥BC,∠B=45°,AE⊥BC于点E,AE=AD=2 cm,求这个等腰梯形的腰长及面积.