□ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O. 将直线AC绕点O顺时针旋转分别交BC、AD于点E、F. (∠AOF为旋转角)(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当∠AOF=90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.
如图,直线与x轴、y轴分别交于点A、C,经过A、C两点的抛物线与x轴的负半轴上另一交点为B,且tan∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D的坐标; (2)若点P是射线BD上一点,且以点P、A、B为顶点的三角形与△ABC相似,求点P的坐标.
在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F. (1)求证:△ABC∽△FCD; (2)若DE=3,BC=8,求△FCD的面积.
已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且. (1)求证:△CED∽△ACD; (2)求证:.
某商场为了方便顾客使用购物车,将滚动电梯由坡角30°的坡面改为坡度为1:2.4的坡面.如图,BD表示水平面,AD表示电梯的铅直高度,如果改动后电梯的坡面AC长为13米,求改动后电梯水平宽度增加部分BC的长(结果保留根号).
如图,点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,,F为AC的中点. (1)设,,试用的形式表示、;(x、y为实数) (2)作出在、上的分向量.(保留作图痕迹,不写作法,写出结论)