如图,对称轴为直线x=−的抛物线经过点A(-6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标; (2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围; ①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形? ②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中, ΔABC 的一边 AB 在 x 轴上, ∠ ABC = 90 ° ,点 C ( 4 , 8 ) 在第一象限内, AC 与 y 轴交于点 E ,抛物线 y = 3 4 x 2 + bx + c 经过 A 、 B 两点,与 y 轴交于点 D ( 0 , − 6 ) .
(1)请直接写出抛物线的表达式;
(2)求 ED 的长;
(3)点 P 是 x 轴下方抛物线上一动点,设点 P 的横坐标为 m , ΔPAC 的面积为 S ,试求出 S 与 m 的函数关系式;
(4)若点 M 是 x 轴上一点(不与点 A 重合),抛物线上是否存在点 N ,使 ∠ CAN = ∠ MAN .若存在,请直接写出点 N 的坐标;若不存在,请说明理由.
已知: ΔABC 和 ΔADE 按如图所示方式放置,点 D 在 ΔABC 内,连接 BD 、 CD 和 CE ,且 ∠ DCE = 90 ° .
(1)如图①,当 ΔABC 和 ΔADE 均为等边三角形时,试确定 AD 、 BD 、 CD 三条线段的关系,并说明理由;
(2)如图②,当 BA = BC = 2 AC , DA = DE = 2 AE 时,试确定 AD 、 BD 、 CD 三条线段的关系,并说明理由;
(3)如图③,当 AB : BC : AC = AD : DE : AE = m : n : p 时,请直接写出 AD 、 BD 、 CD 三条线段的关系.
某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量 y (台 ) 与销售单价 x (元 ) 的关系可以近似地看做一次函数,如下表所示:
x
22
24
26
28
y
90
80
70
60
(1)请直接写出 y 与 x 之间的函数关系式;
(2)为了实现平均每月375元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?
(3)设超市每月台灯销售利润为 ω (元 ) ,求 ω 与 x 之间的函数关系式,当 x 取何值时, ω 的值最大?最大值是多少?
小明在热气球 A 上看到正前方横跨河流两岸的大桥 BC ,并测得 B , C 两点的俯角分别为 53 ° 和 45 ° ,已知大桥 BC 与地面在同一水平面上,其长度为 75 m ,请求出热气球离地面的高度.(参考数据: sin 53 ° ≈ 4 5 , cos 53 ° ≈ 3 5 , tan 53 ° ≈ 4 3 ) .
如图,在 ΔABC 中, AB = AC , AD ⊥ BC 于点 D , E 是 AB 上一点,以 CE 为直径的 ⊙ O 交 BC 于点 F ,连接 DO ,且 ∠ DOC = 90 ° .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 DF = 2 , DC = 6 ,求 BE 的长.