某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
已知 D 是 Rt Δ ABC 斜边 AB 的中点, ∠ ACB = 90 ° , ∠ ABC = 30 ° ,过点 D 作 Rt Δ DEF 使 ∠ DEF = 90 ° , ∠ DFE = 30 ° ,连接 CE 并延长 CE 到 P ,使 EP = CE ,连接 BE , FP , BP ,设 BC 与 DE 交于 M , PB 与 EF 交于 N .
(1)如图1,当 D , B , F 共线时,求证:
① EB = EP ;
② ∠ EFP = 30 ° ;
(2)如图2,当 D , B , F 不共线时,连接 BF ,求证: ∠ BFD + ∠ EFP = 30 ° .
如图,已知抛物线 y = a x 2 过点 A ( - 3 , 9 4 ) .
(1)求抛物线的解析式;
(2)已知直线 l 过点 A , M ( 3 2 , 0 ) 且与抛物线交于另一点 B ,与 y 轴交于点 C ,求证: M C 2 = MA · MB ;
(3)若点 P , D 分别是抛物线与直线 l 上的动点,以 OC 为一边且顶点为 O , C , P , D 的四边形是平行四边形,求所有符合条件的 P 点坐标.
如图,已知 AB 是 ⊙ O 的直径, C 是 ⊙ O 上的一点, D 是 AB 上的一点, DE ⊥ AB 于 D , DE 交 BC 于 F ,且 EF = EC .
(1)求证: EC 是 ⊙ O 的切线;
(2)若 BD = 4 , BC = 8 ,圆的半径 OB = 5 ,求切线 EC 的长.
今年 2 - 4 月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)所有患者的平均治疗费用是多少万元?
(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的 A 、 B 、 C 、 D 、 E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中 B 、 D 两位患者的概率.
如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆 BC 的底部支撑点 B 在水平线 AD 的下方, AB 与水平线 AD 之间的夹角是 5 ° ,卸货时,车厢与水平线 AD 成 60 ° ,此时 AB 与支撑顶杆 BC 的夹角为 45 ° ,若 AC = 2 米,求 BC 的长度.(结果保留一位小数)
(参考数据: sin 65 ° ≈ 0 . 91 , cos 65 ° ≈ 0 . 42 , tan 65 ° ≈ 2 . 14 , sin 70 ° ≈ 0 . 94 , cos 70 ° ≈ 0 . 34 , tan 70 ° ≈ 2 . 75 , 2 ≈ 1 . 41 )