今年 2 - 4 月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)所有患者的平均治疗费用是多少万元?
(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的 A 、 B 、 C 、 D 、 E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中 B 、 D 两位患者的概率.
如图,在平面直角坐标 xOy 中,正比例函数 y = kx 的图象与反比例函数 y = m x 的图象都经过点 A ( 2 , − 2 ) .
(1)分别求这两个函数的表达式;
(2)将直线 OA 向上平移3个单位长度后与 y 轴交于点 B ,与反比例函数图象在第四象限内的交点为 C ,连接 AB , AC ,求点 C 的坐标及 ΔABC 的面积.
在四张编号为 A , B , C , D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用 A , B , C , D 表示);
(2)我们知道,满足 a 2 + b 2 = c 2 的三个正整数 a , b , c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点 A 处安置测倾器,量出高度 AB = 1 . 5 m ,测得旗杆顶端 D 的仰角 ∠ DBE = 32 ° ,量出测点 A 到旗杆底部 C 的水平距离 AC = 20 m ,根据测量数据,求旗杆 CD 的高度.(参考数据: sin 32 ° ≈ 0 . 53 , cos 32 ° ≈ 0 . 85 , tan 32 ° ≈ 0 . 62 )
如图,在平面直角坐标系中,抛物线 y = m x 2 + 4 mx − 5 m ( m < 0 ) 与 x 轴交于点 A 、 B (点 A 在点 B 的左侧),该抛物线的对称轴与直线 y = 3 3 x 相交于点 E ,与 x 轴相交于点 D ,点 P 在直线 y = 3 3 x 上(不与原点重合),连接 PD ,过点 P 作 PF ⊥ PD 交 y 轴于点 F ,连接 DF .
(1)如图①所示,若抛物线顶点的纵坐标为 6 3 ,求抛物线的解析式;
(2)求 A 、 B 两点的坐标;
(3)如图②所示,小红在探究点 P 的位置发现:当点 P 与点 E 重合时, ∠ PDF 的大小为定值,进而猜想:对于直线 y = 3 3 x 上任意一点 P (不与原点重合), ∠ PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.
如图,随着我市铁路建设进程的加快,现规划从 A 地到 B 地有一条笔直的铁路通过,但在附近的 C 处有一大型油库,现测得油库 C 在 A 地的北偏东 60 ° 方向上,在 B 地的西北方向上, AB 的距离为 250 ( 3 + 1 ) 米.已知在以油库 C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库 C 是否会受到影响?请说明理由.