初中数学
数与式
有理数
正数和负数
有理数
数轴
相反数
绝对值
非负数的性质:绝对值
倒数
有理数大小比较
有理数的加法
有理数的减法
有理数的加减混合运算
有理数的乘法
有理数的除法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
近似数和有效数字
科学记数法—表示较大的数
科学记数法—表示较小的数
科学记数法—原数
科学记数法与有效数字
计算器—基础知识
计算器—有理数
数学常识
用数字表示事件
尾数特征
无理数与实数
平方根
算术平方根
非负数的性质:算术平方根
立方根
计算器—数的开方
无理数
实数
实数的性质
实数与数轴
实数大小比较
估算无理数的大小
实数的运算
分数指数幂
代数式
代数式
列代数式
代数式求值
同类项
合并同类项
去括号与添括号
规律型:数字的变化类
规律型:图形的变化类
整式
整式
单项式
多项式
整式的加减
整式的加减—化简求值
同底数幂的乘法
幂的乘方与积的乘方
同底数幂的除法
单项式乘单项式
单项式乘多项式
多项式乘多项式
完全平方公式
完全平方公式的几何背景
完全平方式
平方差公式
平方差公式的几何背景
整式的除法
整式的混合运算
整式的混合运算—化简求值
零指数
负整数指数幂
因式分解
因式分解的意义
公因式
因式分解-提公因式法
因式分解-运用公式法
提公因式法与公式法的综合运用
因式分解-分组分解法
因式分解-十字相乘法等
实数范围内分解因式
因式分解的应用
分式
分式的定义
分式有意义的条件
分式的值为零的条件
分式的值
分式的基本性质
约分
通分
最简分式
最简公分母
分式的乘除法
分式的加减法
分式的混合运算
分式的化简求值
零指数幂
负整数指数幂
列代数式(分式)
二次根式
二次根式的定义
二次根式有意义的条件
二次根式的性质与化简
最简二次根式
二次根式的乘除法
分母有理化
同类二次根式
二次根式的加减法
二次根式的混合运算
二次根式的化简求值
二次根式的应用
方程与不等式
一元一次方程
方程的定义
方程的解
等式的性质
一元一次方程的定义
一元一次方程的解
解一元一次方程
含绝对值符号的一元一次方程
同解方程
由实际问题抽象出一元一次方程
一元一次方程的应用
二元一次方程组
二元一次方程的定义
二元一次方程的解
解二元一次方程
由实际问题抽象出二元一次方程
二元一次方程的应用
二元一次方程组的定义
二元一次方程组的解
解二元一次方程组
由实际问题抽象出二元一次方程组
二元一次方程组的应用
同解方程组
解三元一次方程组
三元一次方程组的应用
一元二次方程
一元二次方程的定义
一元二次方程的一般形式
一元二次方程的解
估算一元二次方程的近似解
解一元二次方程-直接开平方法
解一元二次方程-配方法
解一元二次方程-公式法
解一元二次方程-因式分解法
换元法解一元二次方程
根的判别式
根与系数的关系
由实际问题抽象出一元二次方程
一元二次方程的应用
配方法的应用
高次方程
无理方程
分式方程
分式方程的定义
分式方程的解
解分式方程
换元法解分式方程
分式方程的增根
由实际问题抽象出分式方程
分式方程的应用
不等式与不等式组
不等式的定义
不等式的性质
不等式的解集
在数轴上表示不等式的解集
一元一次不等式的定义
解一元一次不等式
一元一次不等式的整数解
由实际问题抽象出一元一次不等式
一元一次不等式的应用
一元一次不等式组的定义
解一元一次不等式组
一元一次不等式组的整数解
由实际问题抽象出一元一次不等式组
一元一次不等式组的应用
函数
平面直角坐标系
点的坐标
规律型:点的坐标
坐标确定位置
坐标与图形性质
两点间的距离公式
函数基础知识
常量与变量
函数的概念
函数关系式
函数自变量的取值范围
函数值
函数的图象
动点问题的函数图象
函数的表示方法
分段函数
一次函数
一次函数的定义
正比例函数的定义
一次函数的图象
正比例函数的图象
一次函数的性质
正比例函数的性质
一次函数图象与系数的关系
一次函数图象上点的坐标特征
一次函数图象与几何变换
待定系数法求一次函数解析式
待定系数法求正比例函数解析式
一次函数与一元一次方程
一次函数与一元一次不等式
一次函数与二元一次方程(组)
两条直线相交或平行问题
根据实际问题列一次函数关系式
一次函数的应用
一次函数综合题
反比例函数
反比例函数的定义
反比例函数的图象
反比例函数图象的对称性
反比例函数的性质
反比例函数系数k的几何意义
反比例函数图象上点的坐标特征
待定系数法求反比例函数解析式
反比例函数与一次函数的交点问题
根据实际问题列反比例函数关系式
反比例函数的应用
反比例函数综合题
二次函数
二次函数的定义
二次函数的图象
二次函数的性质
二次函数图象与系数的关系
二次函数图象上点的坐标特征
二次函数图象与几何变换
二次函数的最值
待定系数法求二次函数解析式
二次函数的三种形式
抛物线与x轴的交点
图象法求一元二次方程的近似根
二次函数与不等式(组)
根据实际问题列二次函数关系式
二次函数的应用
二次函数综合题
图形的性质
图形认识初步
认识立体图形
点、线、面、体
欧拉公式
几何体的表面积
认识平面图形
几何体的展开图
展开图折叠成几何体
专题:正方体相对两个面上的文字
截一个几何体
直线、射线、线段
直线的性质:两点确定一条直线
线段的性质:两点之间线段最短
两点间的距离
比较线段的长短
角的概念
钟面角
方向角
度分秒的换算
角平分线的定义
角的计算
余角和补角
七巧板
线段的和差
角的大小比较
计算器-角的换算
线段的中点
相交线与平行线
相交线
对顶角、邻补角
垂线
垂线段最短
点到直线的距离
同位角、内错角、同旁内角
平行线
平行公理及推论
平行线的判定
平行线的性质
平行线的判定与性质
平行线之间的距离
三角形
三角形
三角形的角平分线、中线和高
三角形的面积
三角形的稳定性
三角形的重心
三角形三边关系
三角形内角和定理
三角形的外角性质
全等图形
全等三角形的性质
全等三角形的判定
直角三角形全等的判定
全等三角形的判定与性质
全等三角形的应用
角平分线的性质
线段垂直平分线的性质
等腰三角形的性质
等腰三角形的判定
等腰三角形的判定与性质
等边三角形的性质
等边三角形的判定
等边三角形的判定与性质
直角三角形的性质
含30度角的直角三角形
直角三角形斜边上的中线
勾股定理
勾股定理的证明
勾股定理的逆定理
勾股数
勾股定理的应用
平面展开-最短路径问题
等腰直角三角形
三角形中位线定理
三角形综合题
四边形
多边形
多边形的对角线
多边形内角与外角
平面镶嵌(密铺)
平行四边形的性质
平行四边形的判定
平行四边形的判定与性质
菱形的性质
菱形的判定
菱形的判定与性质
矩形的性质
矩形的判定
矩形的判定与性质
正方形的性质
正方形的判定
正方形的判定与性质
梯形
直角梯形
等腰梯形的性质
等腰梯形的判定
梯形中位线定理
*平面向量
中点四边形
四边形综合题
平面向量的加法
平面向量的减法
圆的认识
垂径定理
垂径定理的应用
圆心角、弧、弦的关系
圆周角定理
圆内接四边形的性质
相交弦定理
点与圆的位置关系
确定圆的条件
三角形的外接圆与外心
直线与圆的位置关系
切线的性质
切线的判定
切线的判定与性质
弦切角定理
切线长定理
切割线定理
三角形的内切圆与内心
圆与圆的位置关系
相切两圆的性质
相交两圆的性质
正多边形和圆
弧长的计算
扇形面积的计算
圆锥的计算
圆柱的计算
圆的综合题
尺规作图
作图—尺规作图的定义
作图—基本作图
作图—复杂作图
作图—应用与设计作图
作图—代数计算作图
命题与证明
命题与定理
推理与论证
反证法
轨迹
图形的变化
图形的对称
生活中的轴对称现象
轴对称的性质
轴对称图形
镜面对称
关于x轴、y轴对称的点的坐标
坐标与图形变化-对称
作图-轴对称变换
利用轴对称设计图案
剪纸问题
轴对称-最短路线问题
翻折变换(折叠问题)
图形的剪拼
胡不归问题
线段的垂直平分线定理
线段垂直平分线逆定理
作图--线段垂直平分
角平分线定理
角平分线逆定理
图形的平移
生活中的平移现象
平移的性质
坐标与图形变化-平移
作图-平移变换
利用平移设计图案
图形的旋转
生活中的旋转现象
旋转的性质
旋转对称图形
中心对称
中心对称图形
关于原点对称的点的坐标
坐标与图形变化-旋转
作图-旋转变换
利用旋转设计图案
几何变换的类型
几何变换综合题
图形的相似
比例的性质
比例线段
黄金分割
平行线分线段成比例
相似图形
相似多边形的性质
相似三角形的性质
相似三角形的判定
相似三角形的判定与性质
相似三角形的应用
作图—相似变换
位似变换
作图-位似变换
射影定理
相似形综合题
实数与向量相乘
平面向量定理
向量的线性运算
锐角三角函数
锐角三角函数的定义
锐角三角函数的增减性
同角三角函数的关系
互余两角三角函数的关系
特殊角的三角函数值
计算器—三角函数
解直角三角形
解直角三角形的应用
解直角三角形的应用-坡度坡角问题
解直角三角形的应用-仰角俯角问题
解直角三角形的应用-方向角问题
投影与视图
简单几何体的三视图
简单组合体的三视图
由三视图判断几何体
作图-三视图
平行投影
中心投影
视点、视角和盲区
统计与概率
数据收集与处理
调查收集数据的过程与方法
全面调查与抽样调查
总体、个体、样本、样本容量
抽样调查的可靠性
用样本估计总体
频数与频率
频数(率)分布表
频数(率)分布直方图
频数(率)分布折线图
统计表
扇形统计图
条形统计图
折线统计图
统计图的选择
其他统计图
数据分析
算术平均数
加权平均数
计算器-平均数
中位数
众数
极差
方差
标准差
计算器-标准差与方差
统计量的选择
概率
随机事件
可能性的大小
概率的意义
概率公式
几何概率
列表法与树状图法
游戏公平性
利用频率估计概率
模拟实验
数学竞赛
逻辑推理问题
抽屉原理
排列与组合问题
加法原理与乘法原理
容斥原理
简单的极端原理
简单的枚举法
计数方法
染色问题
整数问题
数的十进制
奇数与偶数
数的整除性
带余除法
质数与合数
约数与倍数
同余问题
尾数特征
完全平方数
质因数分解
整数问题的综合运用
数与式
有理数无理数的概念与运算
因式定理与综合除法
余式定理
立方公式
整式的等式证明
对称式和轮换对称式
部分分式
分式的条件求值
分式的等式证明
拆项、添项、配方、待定系数法
绝对值
因式分解
方程与不等式
含字母系数的一元一次方程
含绝对值符号的一元一次方程
二元一次不定方程的整数解
二元一次不定方程的应用
三元一次不定方程
非一次不定方程(组)
多元一次方程组
含字母系数的一元二次方程
含绝对值符号的一元二次方程
一元二次方程的整数根与有理根
一元二次方程根的分布
高次方程
无理方程
二元二次方程组
含字母系数的一元一次不等式
含绝对值的一元一次不等式
一元二次不等式
应用类问题
函数
y=|ax+b|的图象与性质
y=|ax#178;+bx+c|的图象与性质
含字母系数的二次函数
整式函数的最值
分式函数的最值
绝对值函数的最值
无理函数的最值
多元函数的最值
一元二次方程的最值
二次函数在给定区间上的最值
几何问题的最值
实际问题的最值
取整函数
一次函数的最值
函数最值问题
几何
三角形边角关系
面积及等积变换
三角形的五心
四点共圆
圆幂定理
梅涅劳斯定理与塞瓦定理
正弦定理与余弦定理
四种命题及其关系
一笔画定理
几何不等式
立体图形
路线选择问题

2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:

抽取七年级教师的竞赛成绩(单位:分) :

6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.

七八年级教师竞赛成绩统计表

年级

七年级

八年级

平均数

8.5

8.5

中位数

a

9

众数

8

b

优秀率

45 %

55 %

根据以上信息,解答下列问题:

(1)填空: a =    b =   

(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;

(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

"惜餐为荣,殄物为耻",为了解落实"光盘行动"的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位: kg ) ,进行整理和分析(餐厨垃圾质量用 x 表示,共分为四个等级: A x < 1 B . 1 x < 1 . 5 C . 1 . 5 x < 2 D x 2 ) ,下面给出了部分信息.

七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.

八年级10个班的餐厨垃圾质量中 B 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.

七、八年级抽取的班级餐厨垃圾质量统计表

年级

平均数

中位数

众数

方差

A 等级所占百分比

七年级

1.3

1.1

a

0.26

40 %

八年级

1.3

b

1.0

0.23

m %

根据以上信息,解答下列问题:

(1)直接写出上述表中 a b m 的值;

(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合 A 等级的班级数;

(3)根据以上数据,你认为该校七、八年级的"光盘行动",哪个年级落实得更好?请说明理由(写出一条理由即可).

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

某校将学生体质健康测试成绩分为 A B C D 四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.

(1)以下是两位同学关于抽样方案的对话:

小红:"我想随机抽取七年级男、女生各60人的成绩."

小明:"我想随机抽取七、八、九年级男生各40人的成绩."

根据如图学校信息,请你简要评价小红、小明的抽样方案.

如果你来抽取120名学生的测试成绩,请给出抽样方案.

(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).

甲组杨梅树落果率频数分布表

落果率

组中值

频数(棵     )

0 x < 10 %

5 %

12

10 % x < 20 %

15 %

4

20 % x < 30 %

25 %

2

30 % x < 40 %

35 %

1

40 % x < 50 %

45 %

1

(1)甲、乙两组分别有几棵杨梅树的落果率低于 20 %

(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;

(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了: A .党史宣讲; B .歌曲演唱; C .校刊编撰; D .诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).

各组参加人数情况统计表

小组类别

A

B

C

D

人数(人     )

10

a

15

5

根据统计图表中的信息,解答下列问题:

(1)求 a m 的值;

(2)求扇形统计图中 D 所对应的圆心角度数;

(3)若在某一周各小组平均每人参与活动的时间如下表所示:

小组类别

A

B

C

D

平均用时(小时)

2.5

3

2

3

求这一周四个小组所有成员平均每人参与活动的时间.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

现有甲、乙两种糖果的单价与千克数如下表所示.

甲种糖果

乙种糖果

单价(元 / 千克)

30

20

千克数

2

3

将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为    / 千克.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:填空题
  • 难度:中等

某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位: t ) .根据调查结果,绘制出如下的统计图①和图②.

请根据相关信息,解答下列问题:

(Ⅰ)本次接受调查的家庭个数为   ,图①中 m 的值为   

(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:解答题
  • 难度:中等

某中学规定学生的学期体育成绩满分为100,其中体育课外活动占 30 % ,期末考试成绩占 70 % ,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是  

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:填空题
  • 难度:较易

某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.

(1)求考生小红和小强自选项目相同的概率;

(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:

考生

自选项目

长跑

掷实心球

小红

95

90

95

小强

90

95

95

①补全条形统计图.

②如果体育中考按自选项目占 50 % 、长跑占 30 % 、掷实心球占 20 % 计算成绩(百分制),分别计算小红和小强的体育中考成绩.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

某中学全校师生听取了"禁毒"宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展"我为禁毒献爱心"的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.

(1)求这组数据的平均数和众数;

(2)经调查,当学生身上的零花钱多于15元时,都愿捐出零花钱的 20 % ,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?

(3)捐款最多的两人将和另一个学校选出的两人组成一个"禁毒"知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:

根据以上信息,回答下列问题:

(1)这60天的日平均气温的中位数为   ,众数为   

(2)求这60天的日平均气温的平均数;

(3)若日平均气温在 18 ° C ~ 21 ° C 的范围内(包含 18 ° C 21 ° C ) 为"舒适温度".请预估西安市今年9月份日平均气温为"舒适温度"的天数.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:

一分钟跳绳个数(个     )

141

144

145

146

学生人数(名     )

5

2

1

2

则关于这组数据的结论正确的是 (    )

A.

平均数是144

B.

众数是141

C.

中位数是144.5

D.

方差是5.4

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:选择题
  • 难度:中等

2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:

甲班15名学员测试成绩(满分100分)统计如下:

87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.

乙班15名学员测试成绩(满分100分)统计如下:

77,88,92,85,76,90,76,91,88,81,85,88,98,86,89

(1)按如表分数段整理两班测试成绩

班级

70 . 5 ~ 75 . 5

75 . 5 ~ 80 . 5

80 . 5 ~ 85 . 5

85 . 5 ~ 90 . 5

90 . 5 ~ 95 . 5

95 . 5 ~ 100 . 5

1

2

a

5

1

2

0

3

3

6

2

1

表中 a =   

(2)补全甲班15名学员测试成绩的频数分布直方图;

(3)两班测试成绩的平均数、众数、中位数、方差如表所示:

班级

平均数

众数

中位数

方差

86

x

86

44.8

86

88

y

36.7

表中 x =    y =   

(4)以上两个班级学员掌握党史相关知识的整体水平较好的是   班;

(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,根据树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元) :

0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.69

0.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89

研究小组的同学对以上数据进行了整理分析,得到下表:

分组

频数

0 . 65 x < 0 . 70

2

0 . 70 x < 0 . 75

3

0 . 75 x < 0 . 80

1

0 . 80 x < 0 . 85

a

0 . 85 x < 0 . 90

4

0 . 90 x < 0 . 95

2

0 . 95 x < 1 . 00

b

统计量

平均数

中位数

众数

数值

0.84

c

d

(1)表格中: a =    b =    c =    d =   

(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;

(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.

来源:2021年山东省临沂市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

某学校八年级(2)班有20名学生参加学校举行的"学党史、看红书"知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是   

来源:2021年山东省临沂市中考数学试卷
  • 更新:2021-08-16
  • 题型:填空题
  • 难度:较易

初中数学加权平均数试题