已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径的半圆与y轴的另一个交点是C,一次函数(m为实数)的图象为直线l,l分别交x轴,y轴于A,B两点,如图1.B点坐标是 (用含m的代数式表示),∠ABO= °若点N是直线AB与半圆CO的一个公共点(两个公共点时,N为右侧一点),过点N作⊙P的切线交x轴于点E,如图2.①是否存在这样的m的值,使得△EBN是直角三角形。若存在,求出m的值;若不存在,请说明理由.②当=时,求m的值
(1)计算:
(2)先化简,再求值:,其中.
如图,顶点为的二次函数图象与轴交于点,点在该图象上,交其对称轴于点,点、关于点对称,连接、.
(1)求该二次函数的关系式.
(2)若点在对称轴右侧的二次函数图象上运动,请解答下列问题:
①连接,当时,请判断的形状,并求出此时点的坐标.
②求证:.
如图,内接于,直径交于点,延长至点,使,连接并延长交过点的切线于点,且满足,连接,若,.
(1)求证:;
(2)求的半径;
(3)求证:是的切线.
如图,一次函数的图象与反比例函数的图象交于点与点.
(1)求反比例函数的表达式;
(2)若动点是第一象限内双曲线上的点(不与点重合),连接,且过点作轴的平行线交直线于点,连接,若的面积为3,求出点的坐标.
我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号
活动类型
经典诵读与写作
数学兴趣与培优
英语阅读与写作
艺体类
其他
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .
(4)若该校共有2000名学生,请估计该校喜欢、、三类活动的学生共有多少人?
(5)学校将从喜欢“”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.