(本题10分)AB,CD是ΘO的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,档点E在ΘO外时,连接BC,求证BE平分∠GBC;(2)如图2,当点E在ΘO内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)的条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan∠D=,求线段AH的长.
在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题: (1)试猜想四边形ABDF是什么特殊四边形,并说明理由; (2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.
如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF). (1)求证:△ACE≌△AFE; (2)求tan∠CAE的值.
如图,反比例函数(k为常数,且k≠5)经过点A(1,3). (1)求反比例函数的解析式; (2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.
某班体育委员小华对本班近期体育测验成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题: (1)频数、频率分布表中=,=; (2)补全频数分布直方图; (3)班主任准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
某养猪专业户每年的养猪成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养猪专业户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x. (1)用含x的代数式表示第3年的可变成本为万元. (2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.