在等比数列中,,且,是和的等差中项.(1)求数列的通项公式;(2)若数列满足(),求数列的前项和.
(本小题满分16分)已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值; (Ⅲ)若存在,使得,试求的取值范围.
(本小题满分16分)已知数列是以为公差的等差数列,数列是以为公比的等比数列.(Ⅰ)若数列的前项和为,且,,求整数的值; (Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;(Ⅲ)若(其中,且()是()的约数),求证:数列中每一项都是数列中的项.
(本小题满分14分)经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数(万人)与时间(天)的函数关系近似满足,人均消费(元)与时间(天)的函数关系近似满足.(Ⅰ)求该城市的旅游日收益(万元)与时间的函数关系式;(Ⅱ)求该城市旅游日收益的最小值(万元).
(本小题满分14分)已知角是的内角,向量,⊥.(Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
若直线和直线关于点对称,求的值.