等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求Sn.
(本小题满分12分)已知函数.(1)判断其奇偶性;(2)指出该函数在区间(0,1)上的单调性并证明;(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.
(本小题满分12分) 已知两直线:和:,(1)若与交于点,求的值;(2)若,试确定需要满足的条件;(3)若l1⊥l2 ,试确定需要满足的条件.
(本小题满分10分)如图所示的一个三视图中,右面是一个长方体截去一角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;
(本小题满分10分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
(本小题满分10分)已知动圆过点且与直线相切.(1)求点的轨迹的方程;(2)过点作一条直线交轨迹于两点,轨迹在两点处的切线相交于点,为线段的中点,求证:轴.