(本小题满分12分)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知全集U=R,集合A={x∣x>2或x<-1},集合B={x∣1<x<4},求A∩B,A∪B,(CA)∩B,(CA)∪(CB)
(本小题12分)离心率为的椭圆:的左、右焦点分别为、,是坐标原点.(1)求椭圆的方程; (2)若直线与交于相异两点、,且,求.(其中是坐标原点)
(本小题12分)椭圆的左、右焦点分别为、,直线经过点与椭圆交于两点。(1)求的周长;(2)若的倾斜角为,求的面积。
(本小题12分)在甲、乙两个盒子中分别装有标号为的三个大小相同的球,现从甲、乙两个盒子中各取出个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)求取出的两个球上标号之和不小于的概率.
(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.