(本小题满分10分)在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线(为参数),(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点对应的参数为,为上的动点,求中点到直线距离的最小值.
已知函数. (1)若不等式的解集为,求实数的值; (2)在(1)的条件下,若对一切实数恒成立,求实数的取值范围。
设,求证:
已知函数在处取得极值. (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程.[
设函数. (1)求的单调区间; (2)若当时,不等式恒成立,求实数的取值范围.
已知均为实数,且. 求证:中至少有一个大于0.