某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元。(1)求每辆A型车和B型车的售价各多少万元。(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?
二次函数中x、y满足下表:
(1)求这个二次函数的解析式; (2)求m=?
解方程(每题5分,共10分) (1) (2)
如图,直线y=3x+m交x轴于点A,交y轴于点B(0,3),过A、B两点的抛物线交x轴于另一点C(3,0). (1)求抛物线的解析式; (2)在该抛物线的对称轴上找一点P,使PA+PB最小,求出点P的坐标; (3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
某水果批发商销售每箱进价为40元的苹果,市场调查发现若每箱以50元的价格销售,平均每天销售90箱,价格每提高10元,平均每天少销售5箱. (1)求该批发商平均每天的销售利润 w(元)与销售价 x(元/箱)之间的函数关系式,当x为多少时,w有最大值,这个值是多少? (2)若物价部门规定每箱售价不得高于90元,当每箱苹果的销售价为多少元时,可以获得3000元利润?
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E. (1)求证:AB=AC; (2)求证:DE为⊙O的切线;