把一个足球垂直水平地面向上踢,时间为 t (秒 ) 时该足球距离地面的高度 h (米 ) 适用公式 h = 20 t − 5 t 2 ( 0 ⩽ t ⩽ 4 ) .
(1)当 t = 3 时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求 t ;
(3)若存在实数 t 1 , t 2 ( t 1 ≠ t 2 ) 当 t = t 1 或 t 2 时,足球距离地面的高度都为 m (米 ) ,求 m 的取值范围.
(9分)如图,等腰梯形OABC,OC=2,AB=6,∠AOC=120°,以O为圆心,OC为半径作⊙O,交OA于点D,动点P以每秒1个单位的速度从点A出发向点O移动,过点P作PE∥AB,交BC于点E。设P点运动的时间为t(秒)。(1)求OA的长;(2)当t为何值时,PE与⊙O相切;(3)直接写出PE与⊙O有两个公共点时t的范围,并计算,当PE与⊙O相切时,四边形PECO与⊙O重叠部分面积。
(8分) 甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图(2),测得学校旗杆的影长为900cm.丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ 为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)请根据甲、丙两组得到的信息,求:①灯罩底面半径MK的长;②灯罩的主视图面积。
(8分)问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.⑴ 的说法是正确的.⑵为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?⑶对概率的研究而言小聪与小颖两位同学的实验说明了什么?
(8分)如图,将直角三角形纸片ABC沿边BC所在直线向右平移,使B点移至斜边BC的中点E处,连接AD、AE、CD。(1)求证:四边形AECD是菱形。(2)若直角三角形纸片ABC的斜边BC的长为100cm,且AC=60cm.求ED的长 和四边形AECD的面积;
(7分)如图,是2010年广州亚运会、亚残运会志愿者(含落选的)人数的条形统计图和扇形统计图。(1)图2中“亚运会志愿者”所对应的扇形圆心角度数为 ;(2)请在图1中将“城市志愿者”部分的图形补充完整;