阅读材料,数学家高斯在读书时曾经研究过这样一个问题:经过研究,这个问题的一般性结论是:,其中是正整数.现在我们来研究一个类似的问题:观察下面三个特殊的等式: 将这三个等式的两边分别相加,可以得:读完这段材料,请你思考后回答:(1) ___________________ ; (2) ______________________ ; (3) ___________ .
先化简,再求值:,其中.
如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点). (1)求抛物线的解析式; (2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由; (3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)
如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD2=CA•CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C. (1)求点C的坐标; (2)若,求反比例函数的解析式.
如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m. (1)求点B到AD的距离; (2)求塔高CD(结果用根号表示).