(本小题满分10分)如图,A(-4,),B(-1,2)是一次函数与反比例函数图象的两个交点, AC⊥轴于点C,BD⊥轴于点D。(1)根据图象直接回答:在第二象限内,当取何值时,?(2)求一次函数解析式及的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标。
在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交 BC于点E. (1)求证:点E是边BC的中点; (2)若EC=3,BD=,求⊙O的直径AC的长.
由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元. (1)求4月初猪肉价格下调后每斤多少元? (2)求5、6月份猪肉价格的月平均增长率.
张华同学在学校某建筑物的C点处测得旗杆顶部A点的仰角为300,旗杆底部B点的俯角为450.若旗杆底部B点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A离地面的高度为多少米?(精确到0.1米,)
已知:如图,AD∥BC,ED∥BF,且AF=CE。求证:四边形ABCD是平行四边形。
某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):
请根据上述信息解答下列问题: (1) B组的人数是人; (2) 本次调查数据(指体育活动时间)的中位数落在组内; (3) 若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有人.