已知:以点C(t,) ()为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为坐标原点。(1)求证:的面积为定值。(2)设直线与圆C交于点M、N,若OM=ON,求圆C的方程。
如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙). (Ⅰ)求证:平面; (Ⅱ)当的长为何值时,二面角的大小为?
已知等差数列的前项和为,且(1)求通项公式;(2)求数列的前项和
如图,某观测站C在城A的南偏西的方向,从城A出发有一条走向为南偏东的公路,在C处观测到距离C处31km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20km后到达D处,测得C,D两处的距离为21km,这时此车距离A城多少千米?
甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为、、。若在同一时间内打进三个电话,且各个电话相互独立,求:这三个电话是打给同一个人的概率;这三个电话中恰有两个是打给甲的概率。
已知函数。若,,求的最大值;在中,若,,求的值。