(本小题满分14分)知圆,直线过定点A(1,0).(1)若与圆相切,求的方程;(2)若与圆相交于P,Q两点,线段PQ的中点为M,又与的交点为N,判断是否为定值,若是,则求出定值;若不是,请说明理由。
在平面直角坐标系中,已知圆和圆. (1)若直线过点,且被圆截得的弦长为,求直线的方程; (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点, (I)求证:AC 1//平面CDB1; (II)求二面角C1-AB-C的平面角的正切值。
已知,且函数, (1)求的增区间; (2)求在区间上的最大、最小值及相应的x值;
已知在等比数列中,,且是和的等差中项. (I)求数列的通项公式; (II)若数列满足,求的前项和.
已知函数f(x)=xlnx. (1)求f(x)的最小值; (2)讨论关于x的方程f(x)-m=0(m∈R)的解的个数.