首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 1491

平面内与两定点A1(-a,0)A2(a,0)a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1,F2C2的两个焦点.试问:在C1上,是否存在点N,使得F1NF2的面积S=ma2.若存在,求tanF1NF2的值;若不存在,请说明理由.

登录免费查看答案和解析

平面内与两定点A1(a,0),A2(a,0)(a<0)连线的