(本题10分)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏, 估计游戏设计者可赚多少元?
如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上. (1)写出点P2的坐标; (2)求直线l所表示的一次函数的表达式; (3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
化简:(x+1)2﹣x(x+1).
在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点. (1)求抛物线的解析式; (2)在上方的抛物线上有一动点. ①如图1,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;21·cn·jy·com ②如图2,过点,的直线交于点,若,求的值.
如图,为⊙O的直径,是延长线上一点,切⊙O于点,是⊙O的弦,,垂足为. (1)求证:; (2)过点作交⊙O于点,交于点,连接.若,,求的长.