已知,函数.(Ⅰ)当时,求函数的最小值;(Ⅱ)当时,讨论的图象与的图象的公共点个数.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(Ⅰ)求椭圆的方程;(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,.(1)求证:平面;(2)求证:平面;(3)求四面体的体积.
在中,角的对边分别为,已知.(Ⅰ)求角的大小;(Ⅱ)若,求△的面积.
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若、R且,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在R上有局部对称点,求实数的取值范围.
已知抛物线()的准线与轴交于点.(1)求抛物线的方程,并写出焦点坐标;(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.