如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度 乙的速度(大于、等于、小于);(3)6时表示 ;(4)路程为150km,甲行驶了 小时,乙行驶了 小时;(5)9时甲在乙的 (前面、后面、相同位置);(6)乙比甲先走了3小时,对吗? .
化简:
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的△DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转。 ⑴在图1中,DE交AB于M,DF交BC于N。①说明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积; ⑵继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出理由;若不成立,请说明理由; ⑶继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出结论,不用说明理由。
如图是一个食品包装盒的展开图。(图中六边形的各边长相等) (1)请写出这个包装盒的多面体形状的名称; (2)请根据图中所标的尺寸,计算这个多面体的侧面积(各个侧面的面积之和)
如图,△ABC的三边分别为AC=5,BC=12,AB="13," 将△ABC沿AD折叠,使AC落在AB上.与E点重合。 (1)试判断△ABC的形状,并说明理由. (2)求折痕AD的长.
如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=,CD=,EF=这样的线段.