设等差数列 a n 的公差为 d ,前 n 项和为 S n ,等比数列 b n 的公比为 q .已知 b 1 = a 1 , b 2 = 2 , q = d , S 10 = 100 . (Ⅰ)求数列,的通项公式; (Ⅱ)当 d > 1 时,记 c n = a n b n ,求数列 c n 的前 n 项和 T n .
(本小题满分12分)已知椭圆:的离心率为,其中左焦点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且线段的中点在圆上,求的值.
(本小题满分12分)在等差数列中,公差,是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和为,求.
(本小题满分12分)已知在等比数列中,,且是和的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.
(本小题满分10分) 已知椭圆的中心在坐标原点,右焦点为,、分别是椭圆的左右顶点,是 椭圆上的动点. (Ⅰ)若面积的最大值为,求椭圆的方程; (Ⅱ)过右焦点做长轴的垂线,交椭圆于、两点,若,求椭圆的 离心率.
(本小题满分12分) 过椭圆的右焦点作斜率的直线交椭圆于,两点,且与 共线. (Ⅰ)求椭圆的离心率; (Ⅱ)设为椭圆上任意一点,且. 证明:为定值.