如图:某污水处理厂要在一个矩形 污水处理池 的池底水平铺设污水净化管道 , 是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口 是 的中 点, 分 别落在线段 上.已知 米, 米,记 . (Ⅰ)试将污水净化管道的长度 表示为 的函数 并写出定义域 (Ⅱ)若 ,求此时管道的长度 (Ⅲ)问:当 取何值时,铺设管道的 成本最低?并 求出此时管道的长度
(本小题共14分)在单调递增数列中,,不等式对任意都成立.(Ⅰ)求的取值范围;(Ⅱ)判断数列能否为等比数列?说明理由;(Ⅲ)设,,求证:对任意的,.
(本小题共14分)已知椭圆C:,左焦点,且离心率(Ⅰ)求椭圆C的方程;(Ⅱ)若直线与椭圆C交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A. 求证:直线过定点,并求出定点的坐标.
(本小题共13分)已知函数().(Ⅰ)求函数的单调区间;(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。
(本小题共13分)数列{}中,,,且满足(1)求数列的通项公式;(2)设,求.
(本小题共13分)如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。(Ⅰ)求证: (Ⅱ) 求证:(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。