在的展开式中,求系数绝对值最大的项和系数最大的项。
设函数,(为自然对数的底). (1)求函数的极值; (2)若存在常数和,使得函数和对其定义域内的任意实数分别满足和,则称直线:为函数和的“隔离直线”.试问:函数和是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.
设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。 (1)求椭圆M的方程; (2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
(本小题满分12分) 若数列的前项和是二项展开式中各项系数的和. (Ⅰ)求的通项公式; (Ⅱ)若数列满足,且,求数列的通项及其前项和; (III)求证:.
(本小题满分12分)已知矩形ABCD中,,,现沿对角线折成二面角,使(如图). (I)求证:面; (II)求二面角平面角的大小.
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍. (1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率; (3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.