在一个口袋中有4个完全相同的小球,把它们分别标上1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率.(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE= DF,并说明理由. 解:需添加条件是. 理由是:
在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF. (1)求证:; (2)若,求的度数.
如图,是等边三角形,BD是中线,延长BC至E,使CE=CD,求证:.
如图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
如图,∠A=55°,∠B=30°,∠C=35°,求∠BDC的度数.