已知二次函数满足,且关于的方程 的两个实数根分别在区间、内.(1)求实数的取值范围;(2)若函数在区间上具有单调性,求实数的取值范围.
如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K. 求证:M、N、K三点共线.
已知A是△BCD平面外的一点,E,F分别是BC,AD的中点. (1)求证:直线EF与BD是异面直线; (2)若AC⊥BD,AC=BD,求EF与BD所成的角.
如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证: (1)C1、O、M三点共线; (2)E、C、D1、F四点共面.
如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点. (1)证明:四边形BCHG是平行四边形. (2)C、D、F、E四点是否共面?为什么?
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上. (1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由; (2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈,这样的直线有几条,应该如何作图?