在矩形中,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系.已知点的坐标为,E、F为的两个三等分点,和交于点,的外接圆为⊙. (1)求证:;(2)求⊙的方程;(3)设点,过点P作直线与⊙交于M,N两点,若点M恰好是线段PN的中点,求实数的取值范围.
已知函数 (1)求函数的最小正周期和值域; (2)若 ,且,求的值.
设函数 (I) 讨论的单调性; (II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由. 参考答案
已知函数, (I)若,求在处的切线方程;(II)求在区间上的最小值.
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动. (Ⅰ)求选出的4名选手均为男选手的概率. (Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.
已知直线的极坐标方程为,圆的参数方程为(其中为参数). (Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆上的点到直线的距离的最小值.