(本小题满分15分)已知数列,满足,,且对任意的正整数,和均成等差数列.(Ⅰ)求、的值;(Ⅱ)证明:和均成等比数列;(Ⅲ)是否存在唯一正整数,使得恒成立?证明你的结论.
计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg.
已知函数f(x)=(ax-a-x) (a>0,且a≠1). (1)判断f(x)的单调性; (2)验证性质f(-x)=-f(x),当x∈(-1,1)时,并应用该性质求满足f(1-m)+f(1-m2)<0的实数m的范围.
已知函数f(x)=( (1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明:f(x)>0.
要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.
求下列函数的单调递增区间: (1)y=(;(2)y=2.