(本小题满分12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,.(1)求数列与的通项公式;(2)求数列的前项和.
在△ABC中,角A,B,C的对边分别为,,,且.(1)求角的值; (2)若角,边上的中线=,求的面积.
已知为常数,且,函数, (是自然对数的底数).(1)求实数的值;(2)求函数的单调区间;(3)当时,是否同时存在实数和(),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.
如图,用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为,为使所用材料最省,底宽应为多少米?
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC;(2)求点A到平面PBC的距离.
我市某高中的一个综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考数据: ;.