(本小题满分12分)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和的分布列及数学期望.
已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.
(本小题满分10分)选修4-5:不等式选讲已知函数. (1)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程.已知点,参数,点Q在曲线C:上.(1)求点P的轨迹方程和曲线C的直角坐标方程;(2)求点P与点Q之间距离的最小值.
(本小题满分10分)选修4—1: 几何证明选讲如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.(1)证明:;(2)若,求的值.
已知上是增函数,在[0,2]上是减函数,且方程有三个根,它们分别为.(1)求c的值;(2)求证;(3)求的取值范围.