本小题满分12分)已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.
(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响. (1)求该选手进入第四轮才被淘汰的概率; (2)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)
(本小题满分12分)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (1)是3个景区都有部门选择的概率是; (2)求恰有2个景区有部门选择的概率
(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.求: (1)则袋中原有白球的个数; (2)取球2次终止的概率; (3)甲取到白球的概率
(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求: (1)A、B两组中有一组恰有两支弱队的概率; (2)A组中至少有两支弱队的概率.
(本小题满分12分)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: (1)两人都击中目标的概率; (2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率.