(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.(1)求该选手进入第四轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)
如图在长方形ABCD中,已知AB=4,BC=2 ,M,N,P为长方形边上的中点,Q是边CD上的点,且CQ=3DQ,求的值.
如图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求在射线上,在射线上,且过点,其中米,米. 记三角形花园的面积为. (1)设米,将表示成的函数. (2)当的长度是多少时,最小?并求的最小值. (3)要使不小于平方米,则的长应在什么范围内?
如图,在四棱锥中,菱形的对角线交于点,、分别是、的中点.平面平面,. 求证:(1)平面∥平面; (2)⊥平面. (3)平面⊥平面.
已知顶点的坐标为,,. (1)求点到直线的距离及的面积; (2)求外接圆的方程.
已知正四棱锥中,高是4米,底面的边长是6米。 (1)求正四棱锥的体积; (2)求正四棱锥的表面积.