(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.(1)求该选手进入第四轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)
已知函数,,求的最大值、最小值及此时x的值.
集合, . (1)若,求实数m的取值范围; (2)当时,求A的非空真子集的个数.
在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.
已知动圆过定点,且在轴上截得的弦长. (Ⅰ)求动圆圆心的轨迹方程; (Ⅱ)若过点的直线交圆心的轨迹于点,,且,求直线的方程.
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,. (1)求证:平面; (2)求平面与平面所成锐二面角的余弦值; (3)求直线与平面所成角的余弦值.