(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.求:(1)则袋中原有白球的个数;(2)取球2次终止的概率;(3)甲取到白球的概率
函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时为增函数,且f(1)=0。 (1)求关于t的方程f(2t+5)=0的解; (2)求不等式f[x(x-)]<0的解集。
已知△ABC是边长为2的正三角形,如图,P,Q依次是AB,AC边上的点,且线段PQ将△ABC分成面积相等的两部分,设AP=x,AQ=t,PQ=y,求: (1)t关于x的函数关系式; (2)y关于x的函数关系式; (3)y的最小值和最大值。
已知函数 (1)求f(x); (2)求f(x)在区间[2,6]上的最大值和最小值。
已知集合 (1)当m=3时,求; (2)若,求实数m的值。
在等比数列中,>0,公比,且,又与的等比中项为2。 ①求数列的通项公式。 ②设,数列前n项和为Sn,求Sn。 ③当最大时,求n的值。