已知抛物线C上横坐标为的一点,与其焦点的距离为4.(1)求的值;(2)设动直线与抛物线C相交于A.B两点,问在直线上是否存在与的取值无关的定点M,使得被直线平分?若存在,求出点M的坐标;若不存在,说明理由.
已知集合A={m|正整数指数函数y=(m2+m+1)•()x,x∈N+},求集合A.
已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.
如图(1)是一辆汽车速度随时间而变化的情况示意图.(1)汽车从出发到最后停止共经过多少时间?它的最高时速是多少?(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)如果纵轴表示路程s(千米).如图(2),横轴表示时间t(时).这是一个骑自行车者离家距离与时间的关系图象.在出发后8小时到10小时之间可能发生了什么情况?骑自行车者在哪些时间段保持匀速运动?速度分别是多少?
在日常生活中,我们常常会用到弹簧秤,下表为用弹簧秤称物品时弹簧秤的伸长长度与物品质量之间的关系:
如果用y表示弹簧秤的伸长长度,x表示物品质量,则(1)随x的增大,y的变化趋势是怎样的?(2)当x=3.5时,y等于多少?当x=8时呢?(3)写出x与y之间的关系式.
函数在区间上有两个极值,且两个极值均为最值,求实数的取值范围。