(本小题满分12分)设函数.(1)求函数的单调递增区间;(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
已知两条直线的交点为,动直线 (1)若直线过点,求实数的值; (2)若直线与垂直,求三条直线围成三角形的面积。
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (Ⅰ)求椭圆G的方程; (Ⅱ)求的面积.
三棱柱,底面,且为正三角形,且,为中点. (1)求证:平面⊥平面 (2)若AA1=AB=2,求点A到面BC1D的距离.
某单位为了了解用电量y度与气温x0C之间的关系随机统计了某4天的用电量与当天气温
(1)求用电量y与气温x的线性回归方程; (2)由(1)的方程预测气温为50C时,用电量的度数。 参考公式:
已知抛物线:和⊙:,圆心到抛物线准线的距离为6 (1)求抛物线的方程; (2)求以抛物线C的焦点为右顶点,且离心率为2的双曲线C1的方程