在平面直角坐标系中,设点,以线段为直径的圆经过原点.(1)求动点的轨迹的方程;(2)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论。
已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于时,求k的值.
已知函数.(Ⅰ)求的值;(Ⅱ)求函数的单调区间和极值.
已知椭圆两焦点为和,P为椭圆上一点,且,求的面积.
已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
给定两命题:已知 :;:.若是的必要而不充分条件,求实数的取值范围.