在平面直角坐标系中,设点,以线段为直径的圆经过原点.(1)求动点的轨迹的方程;(2)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论。
如图,四棱锥中,底面为矩形,平面,是的中点. (1)证明://平面; (2)设,三棱锥的体积,求到平面的距离.
已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式; (2)求数列的前项和公式.
在中,分别为角的对边,,且. (1)求角; (2)若,求的面积.
(本小题满分14分)设函数 (1)当时求的单调区间。 (2)当求在上的最大值.