如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合一个点。(Ⅰ)求证:无论点如何运动,平面平面;(Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比。
定义:若各项为正实数的数列满足,则称数列为“算术平方根递推数列”.已知数列满足且点在二次函数的图像上. (1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;(2)记,求证:数列是等比数列,并求出通项公式;(3)从数列中依据某种顺序自左至右取出其中的项 ,把这些项重新组成一个新数列:.若数列是首项为,公比为的无穷等比数列,且数列各项的和为,求正整数的值.
已知函数,函数是函数的反函数.(1)求函数的解析式,并写出定义域;(2) 设函数,试判断函数在区间上的单调性,并说明你的理由.
已知函数.(1)求函数的单调递增区间;(2)在中,内角所对边的长分别是,若,求的面积的值.
在长方体中,,分别是所在棱的中点,点是棱上的动点,联结.如图所示.(1)求异面直线所成角的大小(用反三角函数值表示);(2)求以为顶点的三棱锥的体积.
在平面直角坐标系中,已知动点,点点与点关于直线对称,且.直线是过点的任意一条直线.(1)求动点所在曲线的轨迹方程;(2)设直线与曲线交于两点,且,求直线的方程;(3)若直线与曲线交于两点,与线段交于点(点不同于点),直线与直线交于点,求证:是定值.