(本小题满分12分)已知数列中,(Ⅰ)求证:数列是等比数列;(Ⅱ)若是数列的前n项和,求满足的所有正整数n.
如图,在棱长为a的正方体ABCD—A1B1C1D1中,M为A1D中点,N为AC中点. (1)求异面直线MN和AB所成的角; (2)求证:MN⊥AB1;
(普通班)设函数,其中常数;(1)讨论的单调性;(2)若,当,恒成立,求的取值范围。 (实验班)已知椭圆(0<b<2)的离心率等于抛物线(p>0). (1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程; (2)若抛物线的焦点F为,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足?若存在,求出点P的坐标;若不存在,请说明理由.
(普通班)已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围. (实验班)已知函数R). (Ⅰ)若,求曲线在点处的的切线方程; (Ⅱ)若对任意恒成立,求实数的取值范围.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
某玩具厂生产一种儿童智力玩具,每个玩具的材料成本为20元,加工费为t元(t为常数,且),出厂价为x元,根据市场调查知,日销售量q(单位:个)与成反比,且当每个玩具的出厂价为30元时,日销售量为100个。 (1)求该玩具厂的日利润y元与每个玩具的出厂价x元之间的函数关系式; (2)若t=5,则每个玩具的出厂价为x为多少元时,该工厂的日利润y最大?并求最大值。