(普通班)设函数,其中常数;(1)讨论的单调性;(2)若,当,恒成立,求的取值范围。(实验班)已知椭圆(0<b<2)的离心率等于抛物线(p>0).(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;(2)若抛物线的焦点F为,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足?若存在,求出点P的坐标;若不存在,请说明理由.
如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
已知数列的前项和为,且.(1)求的通项公式;(2)设,若恒成立,求实数的取值范围;(3)设,是数列的前项和,证明.
设函数,(Ⅰ)求的最大值,并写出使取最大值时x的集合;(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,,求的面积的最大值.
已知函数,设且.(1)证明:,且;(2)若对任意满足条件的,恒成立,求实数的最大值.
已知函数.(1)求的单调区间;(2)若方程有四个不等实根,求实数的取值范围.