【原创】(本小题满分12分)已知.(Ⅰ)求函数的最小正周期和对称中心;(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
如图,椭圆 C : x 2 a 2 + y 2 b 2 = 1 的顶点为 A 1 , A 2 , B 1 , B 2 ,焦点为 F 1 , F 2 , | A 1 B 1 | = 7 , S ▱ B 1 A 1 B 2 A 2 = 2 S ▱ B 1 F 1 B 2 F 2 .
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 n 为过原点的直线, l 是与 n 垂直相交于 P 点,与椭圆相交于 A , B 两点的直线, | O P ⇀ | = 1 .是否存在上述直线 l 使 O A ⇀ · O B ⇀ = 0 成立?若存在,求出直线 l 的方程;并说出;若不存在,请说明理由.
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, P A ⊥ 平面 A B C D , A P = A B = 2 , B C = 2 2 , E , F 分别是 A D , P C 的中点.
(1)证明: P C ⊥ 平面 B E F
(2)求平面 B E F 与平面 B A P 夹角的大小
已知 a n 是公差不为零的等差数列, a 1 = 1 且 a 1 , a 2 , a 3 成等比数列 (1)求数列 a n 的通项公式 (2)求数列的前n项和
数列 a n ( n ∈ N * ) 中, a 1 = a , a n + 1 是函数 f n ( x ) = 1 3 x 3 - 1 2 ( 3 a n + n 2 ) x 2 + 3 n 2 a n x 的极小值点.
(Ⅰ)当 a = 0 时,求通项 a n ; (Ⅱ)是否存在 a ,使数列 a n 是等比数列?若存在,求 a 的取值范围;若不存在,请说明理由.